

Input part 3: Implementing
Interaction Techniques

2

Interaction techniques

 A method for carrying out a specific interactive task
 Example: enter a number in a range

 could use… (simulated) slider
 (simulated) knob
 type in a number (text edit box)

 Each is a different interaction technique

3

Suppose we wanted to
implement an interaction for
specifying a line

 Could just specify two endpoints
 click, click
 not good: no affordance,no feedback

 Better feedback is to use “rubber banding”
 stretch out the line as you drag
 at all times, shows where you would end up if you “let go”

4

Aside

 Rubber banding provides good feedback
 How would we provide better affordance?

5

Aside

 Rubber banding provides good feedback
 How would we provide better affordance?

 Changing cursor shape is about all we have to work with

6

Implementing rubber banding

Accept the press for endpoint p1;
P2 = P1;
Draw line P1-P2;
Repeat
 Erase line P1-P2;
 P2 = current_position();
 Draw line P1-P2;
Until release event;
Act on line input;

7

Implementing rubber banding

 Need to get around this loop absolute min of 5 times / sec
 10 times better
 more would be better

 Notice we need “undraw” here

8

What’s wrong with this code?
Accept the press for endpoint p1;
P2 = P1;
Draw line P1-P2;
Repeat
 Erase line P1-P2;
 P2 = current_position();
 Draw line P1-P2;
Until release event;
Act on line input;

9

Not event driven

 Not in the basic event / redraw cycle form
 don’t want to mix event and sampled
 in many systems, can’t ignore events for arbitrary lengths of time

 How do we do this in a normal event / redraw loop?

10

You don’t get to write control
flow anymore

 Basically have to chop up the actions in the code above and
redistribute them in event driven form
 “event driven control flow”
 need to maintain “state” (where you are) between events and

start up “in the state” you were in when you left off

11

Finite state machine controllers

 One good way to maintain “state” is to use a state machine
 (deterministic) finite state machine

 FSM

12

FSM notation

 Circles represent states
 arrow for start state
 double circles for “final states”

 notion of final state is a little off for user
interfaces (don’t ever end)

 but still use this for completed actions
 generally reset to the start state

13

FSM notation

 Transitions represented as arcs
 Labeled with a “symbol”

 for us an event (can vary)
 Also optionally labeled with an action

BA

Mouse_Dn / Draw_Line()

14

FSM Notation

 Means: when you are in state A and you see a mouse
down, do the action (call draw_line), and go to state B

BA

Mouse_Dn / Draw_Line()

15

FSM Notation

 Sometimes also put actions on states
 same as action on all incoming transitions

16

Rubber banding again
(cutting up the code)

 Accept the press for endpoint p1;
A: P2 = P1;
 Draw line P1-P2;
 Repeat
B: Erase line P1-P2;
 P2 = current_position();
 Draw line P1-P2;
 Until release event;
C: Act on line input;

17

A: P2 = P1;
 Draw line P1-P2;
B: Erase line P1-P2;
 P2 = current_position();
 Draw line P1-P2;
C: Act on line input;

FSM control for rubber banding

Press / A

Move / B

Release / C

18

Second example: button

Press inside	 	 highlight
Move in/out	 	 change highlight
Release inside	 act
Release outside	 do nothing

19

FSM for a button?

20

FSM for a button

Press-inside / A

Leave / BEnter / C

Release / D

Release / E

21

FSM for a button

A: highlight button
B: unhighlight button
C: highlight button
D: <do nothing>
E: do button action

Press-inside / A

Enter / CLeave / B

Release / D

Release / E

22

In general...

 Machine states represent context of interaction
 “where you are” in control flow

 Transitions indicate how to respond to various events
 what to do in each context

23

“Events” in FSMs

 What constitutes an “event” varies
 may be just low level events, or
 higher level (synthesized) events

 e.g. region-enter, press-inside

 Example: Swing ActionEvents
 Generated from a range of different low-level events

 Completion of button activation FSM
 Hitting enter in a text field

24

Guards on transitions

 Sometimes also use “guards”
 predicate (bool expr) before event
 adds extra conditions req to fire
 typical notation: pred: event / action

 e.g. button.enabled: press-inside / A

 Note: FSM augmented with guards is Turing complete

25

FSM are a good way to do
control flow in event driven
systems

 Can do (formal or informal) analysis
 are all possible inputs (e.g. errors) handled from each state
 what are next legal inputs

 can use to enable / disable
 Can be automated based on higher level specification

26

Implementing FSMs

state = start_state;
for (;;) {
 raw_evt = wait_for_event();
 evt = transform_event(raw_evt);
 state = fsm_transition(state, evt);
}

 Note that this is basically the normal event loop

27

Implementing FSMs

fsm_transition(state, evt)
 switch (state)
 case 0: // case for each state

 case 1: // case for next state

return state;

28

Implementing FSMs
fsm_transition(state, evt)
 switch (state)
 case 0: // case for each state
 switch (evt.kind)
 case loc_move: // trans evt
 … action … // trans action
 state = 42; // trans target
 case loc_dn:
 ...
 case 1: // case for next state
 switch (evt.kind) …
return state;

29

Implementing FSMs
fsm_transition(state, evt)
 switch (state)
 case 0: // case for each state
 switch (evt.kind)
 case loc_move: // trans evt
 … action … // trans action
 state = 42; // trans target
 case loc_dn:
 ...
 case 1: // case for next state
 switch (evt.kind) …
return state;

30

Table driven implementation

 Very stylized code
 Can be replaced with fixed code + table that represents FSM

 only have to write the fixed code once
 can have a tool that generates table from something else

31

Table driven implementation

 Table consists of array of states
 Each state has list of transitions
 Each transition has

 event match method
 list of actions (or action method)
 target state

32

Table driven implementation

fsm_transition(state, evt)
 for each transition TR in table[state]
 if TR.match(evt)
 TR.action();
 state = TR.to_state();
 break;
 return state

 Simpler: now just fill in table

33

